Borwein integral
Borwein積分は\(\sin x/x\)に関する興味深い性質を持った積分のことです。 例えば $$ \int_{0}^{\infty}\frac{\sin x}{x}dx=\frac{\pi}{2} $$ となることはよく知られていますが、これに\(\sin(3x)/3x\)をかけたものについても $$ \int_{0}^{\infty}\frac{\sin x}{x}\frac{\sin (x/3)}{x/3}dx=\frac{\pi}{2} $$ が成り立ちます。同様のことは\(\sin (x/5)/(x/5)\)や\(\sin(x/7)/(x/7)\)をかけていっても成り立ち、 $$ \int_{0}^{\infty}\frac{\sin x}{x}\frac{\sin (x/3)}{x/3}\cdots\frac{\sin (x/13)}{x/13}dx=\frac{\pi}{2} $$ となります。しかし、次のステップではこの計算は崩れて $$ \int_{0}^{\infty}\frac{\sin x}{x}\frac{\sin (x/3)}{x/3}\cdots\frac{\sin (x/15)}{x/15}dx=\frac{467807924713440738696537864469}{935615849440640907310521750000}\pi<\frac{\pi}{2} $$ となってしまいます。一見するとこの値も\(\pi/2\)になりそうなのですが、何故か値がずれてしまいます。 このような積分のことをBorwein積分とよび、いくつかの計算がなされています。