Skip to content

Analysis

Borwein integral

Borwein積分は\(\sin x/x\)に関する興味深い性質を持った積分のことです。 例えば $$ \int_{0}^{\infty}\frac{\sin x}{x}dx=\frac{\pi}{2} $$ となることはよく知られていますが、これに\(\sin(3x)/3x\)をかけたものについても $$ \int_{0}^{\infty}\frac{\sin x}{x}\frac{\sin (x/3)}{x/3}dx=\frac{\pi}{2} $$ が成り立ちます。同様のことは\(\sin (x/5)/(x/5)\)\(\sin(x/7)/(x/7)\)をかけていっても成り立ち、 $$ \int_{0}^{\infty}\frac{\sin x}{x}\frac{\sin (x/3)}{x/3}\cdots\frac{\sin (x/13)}{x/13}dx=\frac{\pi}{2} $$ となります。しかし、次のステップではこの計算は崩れて $$ \int_{0}^{\infty}\frac{\sin x}{x}\frac{\sin (x/3)}{x/3}\cdots\frac{\sin (x/15)}{x/15}dx=\frac{467807924713440738696537864469}{935615849440640907310521750000}\pi<\frac{\pi}{2} $$ となってしまいます。一見するとこの値も\(\pi/2\)になりそうなのですが、何故か値がずれてしまいます。 このような積分のことをBorwein積分とよび、いくつかの計算がなされています。

至るところ微分不可能な連続関数: 初等的な構成方法

\([-1,1]\)上の関数 $$ \varphi(x)=|x| $$ を考え、 これを\(\varphi(x+2)=\varphi(x)\)として\(\mathbb{R}\)上へ拡張します。 このとき、 $$ f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}\varphi(4^{n}x) $$ は\(\mathbb{R}\)上の連続関数ですが至るところ微分不可能であることが知られています。 以下でこれを示していきましょう。

包除原理

測度空間\((X,\mathcal{B},\mu)\)の有限測度集合\(A_{i}(i=1,\dots,n)\)に対して $$ \mu\left(\bigcup_{i=1}^{n}A_{i}\right)=\sum_{J\subset[n];J\ne\emptyset}(-1)^{|J|-1}\mu\left(\bigcap_{i\in J}A_{i}\right) $$ が成り立ちます。これを包除原理(Inclusion-exclusion principle)と呼びます。