Skip to content

Differential Equation

AUTOのインストール方法

AUTOはODE(常微分方程式)の分岐解析を扱うソフトウェアで、1980年に開発されて以来力学系界隈で使われてきました。 現在はGitHubにてコードが公開されて細々と(?)開発が続けられています。

AUTOは便利ではあるのですが、そのインストール方法がプログラム初心者には少し難しいことがあるそうなのでその流れを少しまとめてみました。 以下では基本的にMac OSでインストールする方法を述べますが、WindowsやLinuxでも同様だと思います。 また、最低限のターミナルでの操作は出来るものとしておきます。

Kovacicのアルゴリズムを用いて調和振動子を解く

Kovacicのアルゴリズムは有利係数の2階線形常微分方程式を解くアルゴリズムです。与えられた微分方程式が解くことができる場合にはその解を出力し、解くことができない場合にはそうであることがわかるという非常に便利なアルゴリズムになっています。ここで言う"解ける"という言葉は微分ガロア理論の意味で用いられています。僕自身は微分ガロア理論には詳しくはないので細かいことはわかりませんが、細かいことがわからなくてもKovacicのアルゴリズムを使うことができるものになっています。

Laplacianの積分表現

領域\(\Omega\subset\mathbb{R}^{n}\)上で定義された関数\(u\in C^{2}(\Omega)\)についてLaplacian(ラプラシアン)は $$ \Delta u(x)=\sum_{i=1}^{n}\frac{\partial^{2}u}{\partial x_{i}^{2}}(x) $$ で表されます。このとき、\(\partial B(x,r)=\{y\in\mathbb{R}^{n}\mid |x-y|=r\}\)とおくと、 $$ \Delta u(x)=\lim_{r\to+0}\frac{2n}{r^{2}|\partial B(x,r)|}\int_{\partial B(x,r)}u(y)-u(x)d\sigma_{y} $$ が成り立ちます。\(d\sigma_{y}\)\(\partial B(x,r)\)上の面積要素です。 この表現を得るには\(u(y)\)\(x\)まわりでTaylor展開することが大事になるのですが、 その際、平均値の定理によって得られるTaylor展開だと剰余項の評価が難しくなります。 積分型のTaylor展開を用いることでこの問題を解決することができます。

坂口-蔵本モデルのダイナミクス

坂口-蔵本モデルは蔵本モデルにphase lagを導入したモデルで、次の微分方程式で表されます。 $$ \frac{d\theta_{i}}{dt}=\omega_{i}+\frac{K}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}+\alpha),\quad i=1,\dots,N. $$ \(\alpha\)が位相差に対応していて、\(\alpha=0\)のときは蔵本モデルに戻ります。 結合強度\(K\)が変化したときに振動子が同期するかどうかを調べていきましょう。