Topology¶
単連結な被覆空間の存在
ホモロジーゼミの基本群パートの一つの山場である、被覆空間の分類定理がやってきました。 この定理を示すためには、単連結な被覆空間の存在証明が必要になります。
Theorem: 単連結な被覆空間の存在
弧状連結かつ局所弧状連結な位相空間\(X,\tilde{X}\)で、\(\tilde{X}\)は\(X\)の被覆空間とする。\(\tilde{X}\)が単連結になるための必要十分条件は\(X\)が半局所単連結であることである。
Unique lifting property
Hatcherの"Algebraic Topology"のProposition 1.34でUnique lifting propertyとその証明が与えられているのですが、その証明がわかりにくかったのでここに分かりやすくまとめてみます。 Hatcherが全体的に読みにくいと感じるのは自分だけだろうか。。。
Brouwer's fixed-point theorem
ホモロジーゼミの中でブラウワーの不動点定理の証明が出てきました。特に円盤\(D^{2}\)上でのブラウワーの不動点定理は基本群を用いて簡便に証明ができることを学んだので備忘録としてまとめておきます。
ブラウワーの不動点定理
\(D^{2}\to D^{2}\)の任意の連続関数は不動点を持つ。