Skip to content

Posts

Good Will Hunting Problem

マット・デイモンとロビン・ウィリアムズ主演の映画『グッド・ウィル・ハンティング/旅立ち』(Good Will Hunting)の中で、MITの廊下に掲示されたグラフ理論の問題を清掃をしていたマット・デイモンが解いてしまうシーンがあります。 中学生とかのときに初めてこの映画を見たときにはよっぽど難しい問題なんだろうな、と思ったのですが、最近見返してみると定義に従って素直に計算すれば解ける問題だということがわかったのでまとめておきます。

Quote

Given the graph \(G\), find

  1. The adjacency matrix, \(A\)
  2. The matrix giving the number of 3 step walks
  3. The generating function for walks from \(i\to j\)
  4. The generating function for walks from \(1\to3\)

特異値分解

行列\(A\)\(m\times n\)の実行列とします。 このときある直交行列\(U\in\mathbb{R}^{m\times m},V\in\mathbb{R}^{n\times n}\)が存在して、 $$ U^{\mathsf{T}}AV=\Sigma=\begin{pmatrix}\mathrm{diag}(\sigma_{1},\dots,\sigma_{r}) & O_{r\times(n-r)} \\ O_{(m-r)\times r} & O_{(m-r)\times (n-r)}\end{pmatrix}\in\mathbb{R}^{m\times n} $$ となるようにできます。このような分解を特異値分解と言います。

至るところ微分不可能な連続関数: 初等的な構成方法

\([-1,1]\)上の関数 $$ \varphi(x)=|x| $$ を考え、 これを\(\varphi(x+2)=\varphi(x)\)として\(\mathbb{R}\)上へ拡張します。 このとき、 $$ f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}\varphi(4^{n}x) $$ は\(\mathbb{R}\)上の連続関数ですが至るところ微分不可能であることが知られています。 以下でこれを示していきましょう。

坂口-蔵本モデルのダイナミクス

坂口-蔵本モデルは蔵本モデルにphase lagを導入したモデルで、次の微分方程式で表されます。 $$ \frac{d\theta_{i}}{dt}=\omega_{i}+\frac{K}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}+\alpha),\quad i=1,\dots,N. $$ \(\alpha\)が位相差に対応していて、\(\alpha=0\)のときは蔵本モデルに戻ります。 結合強度\(K\)が変化したときに振動子が同期するかどうかを調べていきましょう。

包除原理

測度空間\((X,\mathcal{B},\mu)\)の有限測度集合\(A_{i}(i=1,\dots,n)\)に対して $$ \mu\left(\bigcup_{i=1}^{n}A_{i}\right)=\sum_{J\subset[n];J\ne\emptyset}(-1)^{|J|-1}\mu\left(\bigcap_{i\in J}A_{i}\right) $$ が成り立ちます。これを包除原理(Inclusion-exclusion principle)と呼びます。

多変量正規分布間のKL距離

確率分布の間の"近さ"を測る代表的なものとしてKL距離(Kullback–Leibler divergence)があります。特に多変量正規分布間のKL距離は変分下界を計算する際に登場することもあったりして応用上も重要です。その導出を行います。

博士課程1年目を振り返る

2020年の4月から京都大学大学院情報学研究科に博士課程として入学してから1年が経ちました。 ここに博士課程1年目に起こったことをまとめておきます。 将来博士課程に進学する誰かの参考になれば良いなと思います。