Power laws and Critical exponents#

List of functions#

property

function

percolation probability

\(\theta(p)=P_{p}(|C|=\infty)\)

mean cluster size

\(\chi(p)=E_{p}(|C|)\)

truncated mean cluster size

\(\chi^{\mathrm{f}}(p)=E_{p}(|C|; |C|<\infty)\)

number of clusters per vertex

\(\kappa(p)=E_{p}(|C|^{-1})\)

cluster moments

\(\chi^{\mathrm{f}}_{k}(p)=E_{p}(|C|^{k}; |C|<\infty)\)

correlation length

\(\xi_{p}\)

List of critical exponents#

Near the critical point \(p_{\mathrm{c}}\)#

critical exponent

behavior

\(\beta\)

\(\theta_{p}\approx(p-p_{\mathrm{c}})^{\beta}\)

\(\gamma\)

\(\chi^{\mathrm{f}}(p)\approx|p-p_{\mathrm{c}}|^{-\gamma}\)

\(\alpha\)

\(\kappa'''(p)\approx|p-p_{\mathrm{c}}|^{-1-\alpha}\)

\(\Delta\)

\(\dfrac{\chi^{\mathrm{f}}_{k+1}(p)}{\chi^{\mathrm{f}}_{k}(p)}\approx|p-p_{\mathrm{c}}|^{-\Delta}\)

\(\nu\)

\(\xi(p)\approx |p-p_{\mathrm{c}}|^{-\nu}\)

On the critical point \(p_{\mathrm{c}}\)#

critical exponent

behavior

\(\delta\)

\(P_{p_{\mathrm{c}}}(|C|=n)\approx n^{-1-1/\delta}\)

\(\rho\)

\(P_{p_{\mathrm{c}}}(\mathrm{rad}(C)=n)\approx n^{-1-1/\rho}\)

\(\eta\)

\(P_{p_{\mathrm{c}}}(0\leftrightarrow x)\approx|x|^{2-d-\eta}\)